
Pseudospectral versus finite-difference schemes in the numerical integration of stochastic models
of surface growth

Rafael Gallego*
Departamento de Matemáticas, Universidad de Oviedo, Campus de Viesques, E-33203 Gijón, Spain

Mario Castro†

Grupo Interdisciplinar de Sistemas Complejos (GISC) and Grupo de Dinámica No Lineal (DNL), Escuela Técnica Superior de Ingeniería
(ICAI), Universidad Pontificia Comillas, E-28015 Madrid, Spain

Juan M. López‡

Instituto de Física de Cantabria (IFCA), CSIC–UC, E-39005 Santander, Spain
�Received 6 July 2007; published 20 November 2007�

We present a comparison between finite differences schemes and a pseudospectral method applied to the
numerical integration of stochastic partial differential equations that model surface growth. We have studied, in
1+1 dimensions, the Kardar, Parisi, and Zhang model �KPZ� and the Lai, Das Sarma, and Villain model
�LDV�. The pseudospectral method appears to be the most stable for a given time step for both models. This
means that the time up to which we can follow the temporal evolution of a given system is larger for the
pseudospectral method. Moreover, for the KPZ model, a pseudospectral scheme gives results closer to the
predictions of the continuum model than those obtained through finite difference methods. On the other hand,
some numerical instabilities appearing with finite difference methods for the LDV model are absent when a
pseudospectral integration is performed. These numerical instabilities give rise to an approximate multiscaling
observed in earlier numerical simulations. With the pseudospectral approach no multiscaling is seen in agree-
ment with the continuum model.

DOI: 10.1103/PhysRevE.76.051121 PACS number�s�: 05.40.�a, 81.15.Aa, 64.60.Ht, 05.70.Ln

I. INTRODUCTION

Kinetic roughening of surfaces growing in nonequilibrium
conditions has been intensively studied for the past two de-
cades �1–3�. Theoretical approaches make use of both dis-
crete atomistic simulations and stochastic continuum equa-
tions for the evolution of the coarse-grained surface height
h�x , t�. There is overwhelming experimental evidence that
surfaces under general nonequilibrium growth conditions can
develop scale-invariant correlations in space and time, which
supports the hope for a unified theoretical framework to un-
derstand kinetic roughening phenomena from first principles.
The aim is at identifying the various dynamical universalities
of growth associated with different sets of symmetries and/or
conservation laws. It is believed that only these basic ele-
ments largely determine the universality class and the value
of the corresponding critical exponents. In theoretical studies
attention is therefore focused on symmetries and only the
most relevant terms �in the renormalization group sense� are
expected to be required to describe a particular class of
growth.

Universality classes of growth are generically represented
by stochastic partial differential equations,

�th = G��h� + ��x,t� , �1�

where h�x , t� is the height of the interface at substrate posi-
tion x and time t. The external noise ��x , t� represents the

influx of atoms on the surface. The function G��h� defines a
particular model and incorporates the relevant symmetries
and conservation laws. In particular, invariance under trans-
lation along the growth and substrate directions as well as
invariance in the election of the time origin rule out an ex-
plicit dependence of G on h, x, and t. Very often the presence
of nonlinearities in G requires the use of perturbative renor-
malization techniques to obtain analytical approximations for
the critical exponents, which can then be compared with
Monte Carlo simulations of atomistic models and experi-
ments. A perturbative renormalization approach typically
provides the critical exponents as a series expansion on the
parameter �=dc−d, where the critical dimension dc can be
very high when compared with the dimensions of physical
interest �usually d=1 or 2�. Only in a few lucky cases some
extra symmetries may produce cancellation of higher order
loop diagrams that results in a scaling relation between ex-
ponents to be exact to all orders in the perturbative expan-
sion. More often than not, the case is that we only have
approximations to the critical exponents valid up to a certain
order in � and a great deal of elaborated algebraic effort is
required to improve our approximation up to the next order.
This often makes direct numerical integration of Eq. �1� an
extremely useful and necessary tool as the most reliable
source of precise values for the critical exponents.

Numerical schemes to integrate continuum surface growth
equations like Eq. �1� in 1+1 and 2+1 dimensions tend to be
unsophisticated. In most cases a straightforward finite-
differences �FD� method on a lattice does an excellent job
and provides highly precise values for the critical exponents,
at least in dimensions of experimental relevance. In this ap-
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proach �see details below� one basically approximates the
continuous height field, h�x , t�, by its values on the lattice
sites, hi�t�, and derivatives by differences between neighbor-
ing sites. More clever choices of the discretization rule have
been shown to be useful to obtain better agreement with
exact properties of the continuum solutions �4�, which could
not be obtained by using a conventional discretization, like
the nominal values of the continuum equation parameters.

However, the use of FD schemes sometimes poses some
important problems �5–7�. In particular Dasgupta et al. have
shown �8,9� by means of numerical simulations that dis-
cretized versions of commonly studied nonlinear growth
equations exhibit an instability in the sense that single pillars
�grooves� become unstable when their height �depth� exceeds
a critical value. In some cases these instabilities are not
present in the corresponding continuum equations, indicating
that the behavior of the discretized versions is indeed differ-
ent from their continuum counterparts. It is important to re-
mark that this pillar-groove instability is actually generic to
the FD discretizations of a large class of nonlinear growth
equations, including the Kardar-Parisi-Zhang �KPZ� �10� or
the Lai–Das Sarma–Villain �LDV� equations �11–13�. This is
a puzzling result because the corresponding continuum equa-
tions are not unstable.

In many situations, like for instance in KPZ, the existence
of this instability is of little significance for the practical
purpose of obtaining the value of the critical exponents, and
one can actually carry out a correct numerical integration by
using FD schemes. The reason is that one is mostly inter-
ested in the growth from a flat �or almost� surface initial
condition and common relaxation mechanisms do not favor
the formation of large pillars or grooves. In these cases the
FD instability is only realized if the initial condition is pre-
pared in such a state that there is a pillar or groove of a size
above the threshold on an otherwise flat surface, which is
highly artificial and usually uninteresting for practical pur-
poses. However, as already pointed out in Ref. �9�, there is a
large class of systems for which the instability of any FD
scheme is inevitable. Specifically, discrete versions of mod-
els exhibiting anomalous kinetic roughening �14–20� will
certainly show this kind of instability at sufficiently long
times. The reason being that anomalous scaling is associated
with a nontrivial dynamics of the average surface gradient
�local slope�, so that ���h�2�1/2� t�, with ��0 �14,17�.
Therefore, systems exhibiting anomalous roughening will
dynamically generate large local height differences, no mat-
ter how flat the initial condition is. As a consequence, pro-
vided that a simulation is run long enough, the surface will
produce pillars or grooves above the critical value for the
instability to appear. This is for instance the case of LDV
equation of growth �11–13� that reads

�th�x,t� = − K�4h + ��2��h�2 + ��x,t� , �2�

where the noise is Gaussian distributed and delta correlated,

���x,t���x�,t��� = 2D��x − x����t − t�� . �3�

This model constitutes a minimal model for the long wave-
length behavior of surface growth under ideal molecular-
beam epitaxy conditions. The LDV model is interesting in

many respects and has been the focus of a lot of attention in
the literature �11–13,17,20–22�.

Numerical simulations of discrete versions of Eq. �2� in
1+1 dimensions have reported �9� a finite, albeit small,
anomalous exponent ��0.08, possibly indicating a logarith-
mic dependence. A theoretical prediction �17� based on
Flory-type arguments predicted ��1 /11 �see however �23��.
Therefore, from the discussion above, one would expect a
discrete version of Eq. �2� to become unstable. This problem
was studied by Dasgupta et al. and they showed �8,9� that
FD algorithms were actually unstable at long times. They
also estimated the critical height step to be around hc���
�A /� with A�20 for Eq. �2� with K=D=1, which clearly
shows that the instability will appear the sooner the larger the
nonlinear coefficient is. Those authors also claimed that the
addition of higher-order nonlinearities in the FD version of
the model could control the numerical instabilities and ren-
der a stable surface, but with intermittent fluctuations and
multiscaling properties of the surface correlations. It has
been claimed that higher-order nonlinearities of the form
�2n�

2��h�2n, with n�1, may play an important role in LDV
universality class because they are infinitely many margin-
ally relevant nonlinear terms �7,11,14,20�.

These results can be compared with FD integration
schemes for the KPZ equation

�th�x,t� = 	�2h + ���h�2 + ��x,t� . �4�

It has been shown �8,9� that discrete versions of Eq. �4� were
stable, unless isolated grooves of large enough size are in-
cluded in the initial state. The reason being that KPZ exhibits
conventional �nonanomalous� scaling and local slopes are
thus rapidly converging towards a constant. Under general
conditions the constant is much smaller than the critical
slope hc for the KPZ discretization to become unstable and
so, large slopes are not spontaneously generated by the dy-
namics.

In Ref. �24� a study of the 1D and 2D KPZ equation using
FD and pseudospectral �PS� integration methods was pre-
sented. The authors claimed that a PS method gives results
closer to the continuum limit than FD methods. They indeed
showed how a PS method reproduces the exact value of the
global width of the steady state interface within error bars
whereas a FD method with conventional discretization of the
nonlinear term entails significant differences in the amplitude
value. They also used PS computations to reproduce the most
reliable values of the dynamical exponents obtained through
discrete growth models.

In this paper, we discuss the validity of FD integration
algorithms in the presence of anomalous roughening. We
compare the accuracy, stability and overall performance of
FD methods versus PS schemes applied to the paradigmatic
examples of the KPZ and LDV equations. We claim that the
instability previously found in FD discretizations is spurious
and non physical, therefore, FD should be generally avoided
in numerical simulations of continuum growth models with
anomalous scaling. We argue that the main reason for the
adequacy of PS to attack growth problems with anomalous
scaling is that spatial derivatives are more accurate than in
FD methods, where one implicitly assumes that the step
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height is small. Our conclusions are based on numerical
analysis of KPZ and LDV equations in 1+1 dimensions by
means of FD and PS integration schemes. Our results when
comparing both techniques are conclusive: �i� PS methods
are stable against isolated pillars or grooves, while FD are
not, �ii� under the same conditions PS schemes take much
longer than FD to get to a numerical overflow, and �iii� PS
schemes give well behaved correlation functions with no
trace of multiscaling. Finally, we will discuss the implica-
tions of our results for the appearance of multiscaling in
discrete models that have been proved to be in the same
universality class as the LDV equation �25�.

II. NUMERICAL INTEGRATION SCHEMES

In order to perform a numerical integration of Eqs. �4�
and �2� the parameters can be easily rescaled to have only
one independent control parameter—namely, the coupling
constant. As it is customary, one can work with dimension-
less variables h, x and t so that all parameters but one are set
to unity, so we have

�th�x,t� = �2h + g��h�2 + ��x,t� , �5�

for the KPZ equation, where the dimensionless coupling con-
stant is g=�	2D /	3. We can also write the LDV equation in
dimensionless form

�th�x,t� = − �4h + g�2��h�2 + ��x,t� , �6�

where the coupling constant is g=�	2D /K3 and ��x , t� is a
Gaussian noise with mean zero, unit variance, and correla-
tions ���x , t���x� , t���=��x−x����t− t��.

Let us now summarize the idea behind FD and PS inte-
gration schemes and introduce some useful definitions.
Equations �5� and �6� can be cast in the form

�th�x,t� = L�h��x,t� + 
�h��x,t� + ��x,t� , �7�

where L�h� is a linear functional of h and 
�h� is another
functional containing the nonlinear terms.

A. Finite-differences methods

We consider a d-dimensional lattice with periodic bound-
ary conditions with uniform spacing �x in each direction.
The positions of the nodes in the lattice are given by xj
=�x�j1 , j2 , . . . , jd�, 0� ji�Ni−1, 1� i�d, where Ni is the
lattice size in the ith direction. Using a one step Euler’s
method to compute the temporal derivative, the evolution of
a system governed by Eq. �7� is given by

h�xj,t + �t� = h�xj,t� + �t„L�h��xj,t� + 
�h��xj,t�…

+	 �t

��x�d��xj,t� , �8�

where �t is the time step and the stochastic variables ��xj , t�
have zero mean and correlations ���xj , t���xj� , t���=�j,j���t
− t��. We took the � variables as Gaussian random numbers
�other distributions can be used as long as they satisfy the
central limit theorem�.

In finite difference methods, derivatives are computed by
truncating the Taylor series of the field up to certain order.
Let us introduce the finite difference operators � j

f =h�x
+e j�x , t�−h�x , t� and � j

b=h�x , t�−h�x−e j�x , t� which are
the forward and backward difference operators along the j
direction, respectively. In terms of these operators, the linear
parts of Eqs. �5� and �6� are, up to second order of approxi-
mation, given by

LKPZ�xj,t� = ��2h��xj,t� = ��x�−2

i=1

d

�i
f�i

bh�xj,t� ,

LLDV�xj,t� = − ��4h��xj,t� = − �2��2h�

= ��x�−4 

i,j=1

d

�i
f�i

b� j
f� j

bh�xj,t� .

Regarding the nonlinear terms, we consider for the gradient
square the usual symmetric discretization:

��h�2�x,t� =
1

4
��x�−2


i=1

d

���i
f + �i

b�h�x,t��2

that in 1+1 dimensions becomes

��h�2�xi,t� =
1

4
��x�−2�hi+1 − hi−1�2, �9�

where xi= i�x , i=0, ... ,N−1 are the positions of the nodes in
the lattice and hi=h�xi , t�.

In the case of the KPZ equation, other discretizations of
the nonlinear term have been proposed �4,26�. Particularly
interesting is the discretization proposed by Lam and Shin
�LS� �4� that in 1+1 dimensions can be written as

��h�2�xi,t� =
1

3
��x�−2��hi+1 − hi�2 + �hi+1 − hi��hi − hi−1�

+ �hi − hi−1�2� . �10�

LS discretization has two interesting features in 1+1 dimen-
sions: �i� The effective parameter g agrees with its nominal
value, and �ii� the probability distribution of the discretized
version in the steady state can be computed exactly and it
turns out to be the probability distribution of the continuum
equation for all values of g. It has been argued �4� that this
discretization allows one to recover some results predicted
by the continuum model while discrepancies when using the
conventional discretization �9� have been observed �4�.

In the following, we use a lattice spacing �x=1. As is
customary in this kind of simulations, hydrodynamic limit is
achieved by increasing the number of lattice sites N. In nu-
merical integrations of continuous growth models one avoids
to perform the �x→0 limit with fixed L, which would lead
the system towards the linear critical point, since the cou-
pling constant of the discretized equation is g→0 as �x
→0. A fixed lattice spacing �x in the limit L→ is always
preferred as it best drives the system towards the nontrivial
critical point.
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B. Pseudospectral method

To compare with FD methods we have considered a nu-
merical scheme consisting of a spectral method in space to-
gether with a Euler’s method in time. We assume that the
field h�x , t� satisfies periodic boundary conditions in the mul-
tidimensional interval �0,L�d and we represent it as a trun-
cated Fourier series

hN�x,t� = 

k��N

h̃k�t�eiq·x, q =
2�

L
k .

The set �N over which the sum is taken is given by �N

= ��k1 ,k2 , . . . ,kd� /−N /2�ki�N /2−1,1� i�d�. The h̃k�t�’s
are the Fourier coefficients of h which are in general difficult
to compute. In addition, even the simplest nonlinearities
make it computationally expensive the task of going from
real space to Fourier space and vice versa. For these reasons,
we consider a discretized space with N nodes in each direc-
tion xj= �L /N��j1 , j2 , . . . , jd�, 0� ji�N−1, 1� i�d, and we
use the discrete Fourier transform F to integrate any specific
growth model. The discrete Fourier coefficients depend only
on the values of the field at the nodes xj and are given by
�direct discrete Fourier transform�:

ĥk = F�hj� =
1

Nd

j

hj�t�e−iq·xj,

where, from the inverse discrete Fourier transform, the coef-

ficients are hj�t�=h�xj , t�=F−1 �ĥk�=
k��N
ĥkeiq·xj.

Now, applying the Fourier transform to a given growth
model in Eq. �7� and replacing the continuum Fourier coef-
ficients by the discrete ones, we obtain a set of ordinary
differential equations �ODEs� for the discrete Fourier coeffi-
cients of h:

dĥk�t�
dt

= �kĥk�t� + 
̂k�t� + �̂k�t� . �11�

The quantity �k is the linear dispersion relation, which is
obtained through the Fourier transform of the linear part of
the equation; it is �k=−q2 for Eq. �5� and �k=−q4 for Eq.

�6�. The 
̂k�t�’s are the discrete Fourier coefficients of the
nonlinear terms and are given by the following convolution
sums:


̂k�t� = − g 

k1+k2=k

q1 · q2ĥk1
ĥk2 �KPZ� ,

gq2 

k1+k2=k

q1 · q2ĥk1
ĥk2 �LDV� .

Regarding the Fourier coefficients of the noise in Eq. �11�, it
is easy to verify that �̂k�t� are complex Gaussian variables
with zero mean and correlations

��̂k�t��̂k��t��� = 2DNd�k,−k���t − t�� .

To integrate Eq. �11� we perform the following change of
variables based on the solution of the linear equation:

ĥk�t� = e�ktẑk�t� + R̂k�t� ,

where R̂k�t�=e�kt�0
t du e−�ku�̂k�u� and the functions ẑk satisfy

the equations

dẑk�t�
dt

= 
̂k�t�e−�kt. �12�

The set of ODEs in Eq. �12� can be solved by using one of
the several algorithms available for stochastic differential
equations �Euler, Runge-Kutta, predictor-corrector methods,
etc.�. Considering a one step Euler’s method to integrate Eq.

�12� and going back to the original variable ĥk, we are finally
left with

ĥk�t + �t� = e�k�t�ĥk�t� + �t
̂k�t�� + r̂k�t� . �13�

Assuming that �k=�−k, the variables r̂k�t� can be obtained
as

r̂k�t� =	e2�k�t − 1

2�k

1

��x�d v̂k�t� ,

where �x=L /N and v̂k�t� are the discrete Fourier transform
of a set of Gaussian random numbers of zero mean and unit
variance. Note that, as expected, when �t→0 we recover the
last term on the right side of Eq. �8�.

Equation �13� can be interpreted as an Euler scheme with
varying integration time step, e�k�t�t, so that our algorithm
provides a smaller time step for the smallest length scales �so
it is intrinsically multiscale�. This represents a significant
improvement with respect to the pseudospectral method used
in �24�, which is just Eq. �11� integrated with a one step
Euler’s method.

The computation of the nonlinear terms for the KPZ and
LDV equations in Fourier space involves the Fourier trans-
form of the product of two functions �actually, the square of
�h�. In general, calling these two functions � and �, we need
to calculate the convolution sum


̂k = 

k1+k2=k

k1,k2��N

�̂k1
�̂k2

. �14�

In one dimension, this convolution sum implies O�N2� op-
erations, which is computationally more expensive than a
finite difference method, for which only O�N� operations are
needed. To speed up the computation, we used a pseudospec-
tral transform method to compute the Fourier transform of
the nonlinear term. Starting from �̂k and �̂k, the inverse
transformation is used to obtain � and � in real space. Then
� and � are multiplied to obtain 
 in real space. Finally, the

direct Fourier transform is applied to obtain the 
̂k. In terms
of the discrete Fourier operator F, this pseudospectral calcu-
lation can be written as follows:


̂k = F†F−1��̂k�F−1��̂k�‡ .

This procedure allows to evaluate the convolution sum using
O�N log N� operations in one dimension. It is important to

note that the Fourier coefficients 
̂k computed in a pseu-
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dospectral manner differ from those obtained from a true
spectral computation. The difference is the so-called aliasing

error. For example, in one dimension, the coefficients 
̂k
computed pseudospectrally turn out to be


̂k = 

k1+k2=k

�̂k1
�̂k2

+ 

k1+k2=k±N

�̂k1
�̂k2

.

The first term on the right-hand side is just the convolution
sum �14� whereas the second term is the aliasing error. The
aliasing error has been proved to be asymptotically of the
same order of the error made in truncating the Fourier series.
There are several recipes to remove the aliasing. We used a
well-known truncation technique usually referred to as the
3/2 rule �27�.

III. COMPARISON OF THE METHODS IN 1+1
DIMENSIONS

A. Preliminaries

In order to compare the results provided by the FD and PS
numerical methods applied to models �5� and �6�, we must
first notice that, for any given model and the same value of
the nonlinear coupling parameter g, the intensity of the non-
linear effects depends on the numerical scheme used to inte-
grate the equation. This fact, which has already been pointed
out in Ref. �28�, leads to the conclusion that different algo-
rithms cannot in principle be compared directly. In Fig. 1, the
average �both over space and realizations� of the nonlinear
term for the 1D KPZ equation is shown in several cases. We
see that, for the same value of the coupling parameter, the PS
method gives effectively a larger nonlinear term. In other
words, for the same value of g, the FD method underesti-
mates the intensity of the nonlinear term with respect to the
PS method. A comparison of the two numerical methods can
be only made if the nonlinear effects are of the same order
for both of them on average.

For the KPZ equation the nonlinear effects can be moni-
tored by measuring the mean velocity of the interface, which
is given by

v =
g

L
�

0

L

dx���h�2� .

In the inset of Fig. 1 the average height of the interface as
a function of time for the 1D KPZ equation is shown. The
slope of this curve is just the velocity of the interface. For the
same value of g, the interface obtained with the PS method
moves faster. As said before, this indicates that the nonlinear
effects are stronger in the PS method than in the FD method.
It is easy to find values of g such that the interface in both
cases moves approximately at the same velocity, which
means that nonlinear effects are of similar magnitude. Then,
if we denote by vFD�g� and vPS�g� the mean interface veloc-
ity for the FD and PS methods, respectively, the value of the
coupling parameter g̃ such that vPS�g̃�=vFD�g� is given by

g̃ = g
vFD�g�
vPS�g�

. �15�

The ratio vFD�g� /vPS�g� depends smoothly on both g and the
system size, as it can be seen in Fig. 2. The ratio of velocities
of the interfaces slightly decreases with g and increases with
the system size. For example, for a system size of L=128
and g=2.5, we find numerically that vFD�g� /vPS�g��0.46,
which means that the nonlinear effects in the PS method are
approximately twice as much stronger than those of the FD
method. In Fig. 1 we can see how the nonlinear terms for
both integration methods become similar when g is de-
creased from 2.5 to a value of 2.5�0.46=1.15 for the PS
method.

In the case of the LDV equation, we can proceed in a
similar manner. Let us denote by �M�g ; t�=g���2��h�2 � � the
absolute value of the nonlinear term of the LDV equation
averaged over space and realizations for the numerical
method M. Then, for a given value of g used with the FD
method, we can estimate a g̃ for the PS method leading to a
nonlinear term of similar magnitude to be

g̃ = g��FD�g;t�
�PS�g;t� � t

. �16�

In the previous expression the angular brackets denote an
average over the time interval used in the simulation. As for
the KPZ equation, the ratio g̃ /g computed according to Eq.
�16� depends slightly on both the system size and g. For
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FIG. 1. Average over space and realizations of the nonlinear
term for the 1D KPZ equation as a function of time. The inset
shows the average height of the interface as a function of time. Here
L=128, and the averages are taken over 100 realizations. The kind
of numerical method and the value of the nonlinear coupling pa-
rameter for each curve are shown in the legend.
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FIG. 2. Ratio vFD /vPS as explained in the text as a function of
the nonlinear coupling parameter g for several system sizes.
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example, for a system size of L=128 and a value of gFD
=1.25 used in the FD algorithm, we find that a value of
gPS�0.42 gives rise to a nonlinear term of the same magni-
tude for the PS method �see Fig. 3�. As occurs for the KPZ
equation, the nonlinear effects are stronger for the PS
method.

We checked that the global dynamical exponents obtained
with the FD and PS methods are the same using values of g
according to Eqs. �15� and �16�. The global interface width
scales according to the Family-Vicsek ansatz �29�:

W�L,t� = ��h�x,t� − h̄�2� = t�/zf�L/t1/z� ,

where the scaling function f behaves as

f�u� � �u� if u � 1,

const if u � 1.

The parameter � is the roughness exponent, z is the dynamic
exponent, and the ratio �=� /z is the time exponent. In 1
+1 dimensions the critical exponents can be computed ex-
actly �10� and their values are �=1 /2 and z=3 /2, so that
�=1 /3. Using the FD with g=2.5, we found the exponents
��0.49, ��0.32, z=� /��1.52 for the FD method and
with g=1.2 we obtain the same values of the exponents with
the PS method within error bars. For the LDV equation the
global exponents are known for arbitrary dimension. In 1
+1 dimensions, one has exactly �=1, �=1 /3, and z=3. Tak-
ing a value of g=1.25 we found the exact value of the expo-
nents with two significant digits by integrating the equation
with the FD method, with system sizes ranging from L=16
to L=256 and averaging the interfaces over 100 runs. On the
other hand, the PS method with g=0.42 provides the same
exponents within error bars.

B. Stability of the algorithms

We tested the stability of the algorithms by measuring the
probability P�t� that the system exhibits a numerical over-
flow when starting from a flat interface. This is measured
from a large number of independent runs as the frequency
probability of getting a computer overflow at time t. This
numerical instability takes place when the height of the in-

terface tends to grow indefinitely. The probability of instabil-
ity is a decreasing function of the time step used in the simu-
lations.

In Fig. 4 the probability of instability as a function of time
for the 1D KPZ equation is shown for several cases. We
show curves for two time steps �t=10−2 and �t=10−3. The
system size is L=100 and the probabilities are computed
over 2000 samples. The values of g were chosen in such a
way that the nonlinear effects for the two methods were of
the same order. For the KPZ equation this is achieved when
gPS�0.48gFD. In all cases we found the probabilities for the
PS method to be smaller than those of the FD method for a
given time step. For example, for a time step of �t=10−3, we
can see in the bottom graphic of Fig. 4 that the PS method is
stable �that is, the probability of instability is equal to zero�
in the time interval �0,100� for values of g=3.6, 4.8, and 6.0,
whereas the FD becomes unstable at very short times.

In Fig. 5 we show the probability of instability as a func-
tion of time for the 1D LDV equation. In this case we took
gPS=0.34gFD to match the nonlinear effects for both meth-
ods. In much the same way as for the KPZ equation we see
that for a given time step the PS method is the most stable.
This is also observed for other time steps ranging from 10−5

to 10−2. We then conclude that the PS method is the most
stable when the intensity of the nonlinear terms are of
equivalent magnitude. This means that, under the same con-
ditions, the PS method allows to follow the temporal evolu-
tion of the system up to larger times.

C. KPZ equation

There are some exact results of the continuum KPZ model
that we can used to test the numerical methods. First, the
steady state probability distribution of the heights is known
exactly �1,2�. In terms of the slopes, m�x�=�xh�x�, it is
known that
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FIG. 3. Average over space and realizations of the absolute
value of the nonlinear term for the 1D LDV equation as a function
of time. Here L=128, and the averages are taken over 100 realiza-
tions. The kind of numerical method and the value of the nonlinear
coupling parameter for each curve are shown in the legend.
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show results for the FD and PS numerical methods and some dif-
ferent values of the nonlinear coupling parameter g which are
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P�m� � exp�−� dx m�x�2� .

This expression can be written approximately as

P�m� � exp�− 

i=0

N

�xmi
2� = exp�− �xm2� .

We have used the central limit theorem to identify 
i=0
N mi

2

with m2. Here m represents the slope of the field in the steady
state at any point of the lattice. From the normalized expres-
sion of the probability, P�m�=�−1/2e−m2

, we can find the sev-
eral moments �m2�=1 /2, �m4�=3 /4, and �m6�=15 /8.

For the discretized model and when the LS discretization
is used, the steady state distribution probability is found to be
�4�

P�hi� � exp�− 

i=0

N

�hi+1 − hi�2� . �17�

It is worth mentioning here a caveat concerning Eq. �17�.
One can see that, in order to reproduce numerically the slope
distribution with the FD method, slopes must be computed
with the forward �or backward� operator, so that mi=hi�
=hi+1−hi �or mi=hi−hi−1�. We have checked that if the sym-
metric rule to compute the derivatives �mi= �hi+1−hi−1� /2� is
used the width of the slope probability distribution is far
from unity, which is the exact value. When forward or back-
ward derivatives are used, however, the correct value is re-
covered. Remarkably, the PS method provides the proper re-
sult in a natural way.

The global interface width in the steady state is also
known exactly �21�,

W�L� =	 1

24
L1/2, t →  , �18�

and it is independent of the nonlinear coupling parameter g.
In Ref. �4� it is shown that a FD method with conventional
discretization for the nonlinear term, Eq. �9�, provides steady
state interfaces whose global width is of the form �18� but
with a factor in front of L1/2 significantly smaller than the
predicted value 24−1/2. It has been argued �4� that with the
improved discretization �10� the correct value for the factor
is recovered. A plot of ��L�=	24 /LW�L� versus L−1 was
presented in Refs. �24,30,31� showing that ��L� is unity
within error bars for both the PS method and the FD method
with the discretization �10�, although the dispersion of the
data is larger for the FD method. We have also carried out a
similar study comparing FD and PS methods. We checked
that the curve W�L� versus L can be fitted to a function of the
form B L1/2, where B=0.182±0.002 for the FD method with
the usual discretization �9�. As expected, this value is clearly
smaller than the nominal value B0=24−1/2�0.204. This ob-
servation is in agreement with that of Ref. �4�. On the other
hand, for both PS and FD method with LS improved discreti-
zation �10� we obtain the same value �indistinguishable up to
the third digit� B=0.196±0.003, a value very close to B0
indeed. Therefore, with the PS method we obtain in a natural
way the result predicted by the continuum model for the
steady state global interface width. For the FD method, on
the contrary, we must use an ad hoc discretization of the
nonlinear terms to achieve the same results.

D. LDV equation

We have investigated the influence of the numerical
method on the reported multiscaling behavior of the LDV
equation �8,9�. Multiscaling can be easily detected by look-
ing at the moments of the nearest neighbor height difference.
We define �14�

�q�t� = ��hi+1�t� − hi�t��q�1/q,

where the average is taken over each site of the system and
over the different realizations of the noise. In systems that
exhibit anomalous scaling, as the case of the LDV equation
for intermediate times �see �23��, the moments �q�t� are ex-
pected to grow as follows:

�q�t� � t�q/z, t � Lz,

where L is the system size and z is the dynamical exponent.
When the moments scale in a different way, that is, when the
�q’s depend on q, the system is said to show multiscaling. As
done in Refs. �8,9�, we monitor the multiscaling by looking
at the ratios �q�t� /�1�t�, q�2. Equivalently, multiscaling
may also be studied by measuring the height difference cor-
relation function �8,9,14�. In Fig. 6�a� we show the ratios
�q�t� /�1�t� with q=2,3 ,4 ,5 for the 1D LDV equation inte-
grated with the FD scheme. Parameter values are L=1000,
g=2, and the averages are taken over 100 realizations. This
is in fact a reproduction of Fig. 12 in Ref. �9�. As can be seen
in the picture, the greater the q, the faster the growth of
�q /�1 with time. This behavior implies the existence of mul-

0.0

0.5

1.0

0 20 40 60 80 100

0.0

0.5

1.0

t

P
(t

)
∆t = 10−2

∆t = 10−3

FD

PS

gFD = 2.5, gPS = 0.85

gFD = 3.5, gPS = 1.2

gFD = 5.0, gPS = 1.7

FIG. 5. �Color online� Probability of instability for the 1D LDV
equation as a function of time. The initial condition is a flat inter-
face. Here L=100 and the probabilities are computed using 2000
realizations. Curves for two values of the time step are shown. We
show results for the FD and PS numerical methods and some dif-
ferent values of the nonlinear coupling parameter g which are
shown in the legend.
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tiscaling. For times greater than 100, the evolution of the
system cannot be followed due to the presence of numerical
instabilities. The authors of Ref. �9� claimed that this behav-
ior is related to an instability of the discretized LDV equation
against the growth of isolated pillars, which are just height
profiles such that the field h is positive at a certain point
while being zero otherwise. For a given a value of the pa-
rameter g, there exists a critical value hc of the pillar height
beyond which the pillar grows with a certain probability. It is
found that this critical height goes as hc�g−1. On the other
hand, the effect of the magnitude of the time step on this
instability seems to be very small. For this reason, it is fur-
ther argued in Ref. �9� that this instability is not a numerical
artifact due to the use of an integration time step that is not
small enough. As we show in the following our results dis-
agree with this interpretation.

Interestingly, we find that the numerical integration of the
LDV equation with the PS method has a significant impact
on the observed scaling properties. The instability discussed
above, which is present with any FD method, is no longer
present, at least in the wide range of couplings we studied.
Specifically, a pillar like initial condition of the form

hj = h0 if j =
N − 1

2
,

0 otherwise,

with 0 � j � N − 1, N odd, h0 � 0

�19�

never grows when the LDV equation is integrated with the
PS method we described above. In the absence of noise, the
temporal derivative of the field �19� is always negative. A
straightforward calculation leads to

�th = − �4h + g�2��h�2 = −
h0�4

15L4 �N2 − 1��3N2 − 7�

� −
h0�4

5
� 0, L = N � 1.

Therefore, a pillar or the form �19� always tends to shrink in
the deterministic case, and any reasonable integration
scheme should be consistent with this behavior. Other struc-
tures like double pillars, however, might grow in time when
their size exceeds a certain value.

In Fig. 6�b� we show the ratios �q�t� /�1�t�, q=2,3 ,4 ,5,
for the 1D LDV equation integrated with the PS scheme. In
this case we use a value of g=1.5 for which the nonlineari-
ties are considerably stronger than for the FD method with
g=2. As it can be observed, the curves do not grow in time,
which means that there is no multiscaling. For other values
of g and other system sizes similar results were obtained. It
is worth mentioning, however, that the instability does show
up when the aliasing is not removed. In this case an isolated
pillar may grow when its height is larger than a critical value,
in much the same way as with the FD method. So, it is
strongly recommended to remove aliasing effects when ap-
plying a PS method to correctly describe the continuum
physics. Note that the aliasing does not actually affect global
properties of the system such as multiscaling, the value of
the critical exponents, etc. Indeed, we have also carried out a
study of the PS method without removing the aliasing be-
cause in this case a similar instability of the FD method is
present. We have not observed multiscaling in this case ei-
ther. We then conclude that the multiscaling does not seem to
be related to this instability, but to an inappropriate integra-
tion scheme.

This analysis leads to the main conclusion of our paper:
The existence of multiscaling may depend on the numerical
scheme used to integrate the growth model. We argue that
the instability �and apparent multiscaling behavior� is intrin-
sic to the numerical integration scheme rather than to the
physical problem itself, in contrast with the conclusions of
Refs. �8,9�. Our results clearly show that the instability pre-
viously found in FD discretizations has to be seen as spuri-
ous and inherent to the discretization scheme used. PS inte-
gration methods do not show any trace of either instability
�when aliasing is properly removed� or multiscaling, repre-
senting much more accurately the dynamics and statistics of
the continuum problem. We conclude that a PS method
should be preferred for surface growth equations with
anomalous scaling, because next-neighbor height differences
in this case can grow very large.

IV. CONCLUSIONS

We have shown that the choice of the numerical method
used to integrate certain stochastic models of surface growth
may be of paramount importance in the study of some physi-
cal properties of the system. We have compared a standard
finite difference method with a pseudospectral numerical
scheme in the integration of the KPZ and LDV growth mod-
els in 1+1 dimensions. As the FD method underestimates the
nonlinear effects with respect to the PS method, the nonlin-
ear coupling parameters were tuned up so that the nonlinear
terms were of the same order for both numerical methods on
average. The global critical exponents, obtained from the
global interface width are the same for the two numerical
methods.

With regard to the KPZ equation there are some exact
results available derived from the continuum model. The ex-
pression for the global width of the interface is known in the
saturation regime. With the FD method and a standard dis-
cretization for the nonlinear term, the amplitude of the width
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FIG. 6. Ratios �q /�1, q=2,3 ,4 ,5, as a function of time, of the
moments of the nearest neighbor height difference for the 1D LDV
equation integrated with the �a� FD and �b� PS numerical methods.
Here L=100, gFD=2, gPS=1.5, and the averages are taken over 300
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of the numerical interfaces is smaller than that of the con-
tinuum. With the spectral approach, on the contrary, numeri-
cal results are very close to the predicted value. Neverthe-
less, it is possible with the finite differences scheme to get
close to the continuum model prediction for the width of
steady state interfaces, but at the expense of using more so-
phisticated discretizations.

We have tested the stability of the algorithms by measur-
ing for different time steps the probability for the system to
undergo a floating point instability evolving from a flat in-
terface. This instability is related to a numerical overflow in
the surface height data. The PS method proved to be the most
stable in all the cases we have studied for both models. In the
same way, with the PS method it is possible to follow the
temporal evolution of the system for longer times than with
the FD method.

The LDV equation exhibits anomalous scaling at interme-
diate times, so that according to �17� �but see also �23�� the
average slope of the field is expected to grow in time. Any
FD method leads to a numerical instability against the

growth of an isolated pillar. This instability has been claimed
�8,9� to be the reason why approximate multiscaling is ob-
served in the numerical simulations, although multiscaling is
not present in the continuum equation. More importantly,
multiscaling has been interpreted as a real physical effect,
which could explain the multiscaling behavior of surface
fluctuations observed in atomistic models believed to belong
to the LDV universality class. However, our results show
that this interpretation is misleading. We have shown that
surface multiscaling is not observed with the PS method,
regardless of the temporal evolution of isolated pillars.
Therefore, surface multiscaling does not seem to be related
to this instability for the PS method nor represent any intrin-
sic physics of the LDV equation as such.
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